Relative importance of different secondary successional pathways in an Alaskan boreal forest
نویسندگان
چکیده
Postfire succession in the Alaskan boreal forest follows several different pathways, the most common being self-replacement and species-dominance relay. In self-replacement, canopy-dominant tree species replace themselves as the postfire dominants. It implies a relatively unchanging forest composition through time maintained by trees segregated within their respective, ecophysiological niches on an environmentally complex landscape. In contrast, species-dominance relay involves the simultaneous, postfire establishment of multiple tree species, followed by later shifts in canopy dominance. It implies that stand compositions vary with time since last fire. The relative frequencies of these and other successional pathways are poorly understood, despite their importance in determining the species mosaic of the present forest and their varying, potential responses to climate changes. Here we assess the relative frequencies of different successional pathways by modeling the relationship between stand type, solar insolation, and altitude; by describing how stand age relates to species composition; and by inferring successional trajectories from stand understories. Results suggest that >70% of the study forest is the product of self-replacement, and tree distributions are controlled mainly by the spatial distribution of solar insolation and altitude, not by time since last fire. As climate warms over the coming decades, deciduous trees will invade cold sites formerly dominated by black spruce, and increased fire frequency will make species-dominance relay
منابع مشابه
Modeling the Impact of Black Spruce on the Fire Regime of Alaskan Boreal Forest
In the boreal biome, fire is the major disturbance agent affecting ecosystem change, and fire dynamics will likely change in response to climatic warming. We modified a spatially explicit model of Alaskan subarctic treeline dynamics (ALFRESCO) to simulate boreal vegetation dynamics in interior Alaska. The model is used to investigate the role of black spruce ecosystems in the fire regime of int...
متن کاملDispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.
Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and ...
متن کاملCharcoal Reflectance Reveals Early Holocene Boreal Deciduous Forests Burned at High Intensities
Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently...
متن کاملChanges in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest
Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long-lived organisms to reorganize in alternative configurations. This study used landscape-sca...
متن کاملFIRE AND SUCCESSIONAL TRAJECTORIES IN BOREAL FOREST: IMPLICATIONS FOR RESPONSE TO A CHANGING CLIMATE By
Because of the key role played by fire in structuring boreal forest ecosystems, interactions between vegetation and fire regime may be an important and dynamic control of forest response to climate change. This research uses a series of field observations and experiments in boreal forests to examine the nature of several potential fire and vegetation interactions, and how such interactions may ...
متن کامل